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Objectives Data and Annotations Results

- Does psychological well-being translate across English and Spanish on Twitter?
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- Is meaningtul cultural information lost in translation? . Amazon’s Mechanical Turk (MTurk) usec

Specifically: - CrowdFlower used to annotate 5,000 random Spanish Tweets . é%l . (Ovzfﬁgﬁ)
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- Can resources built in English or Spanish be translated and applied to text in the - Separate annotation tasks set up for each of the 10 PERMA components English | Soanish Néén N néﬁfﬁﬁii*
other language? - Workers asked to indicate “to what extent does this message express” the construct Predictive | E{;‘vge'zg to English @) (moone) 02 024 42
- ol - - on a scale from 1 to 7 Lexicon Tweets NEG R sad**
- Can text in English or Spanish be automatically translated to the other language @) | (uiste) | L7T0 0.0012 100
in order to apply resources developed in that language? Google NEG P hate'*
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Methods Table 4: Examples of specific errors
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- Error types denoted by asterisks: * denotes a change in sign, ** denotes the largest

- Improvements in SM'T systems allow sentiment in resource-poor languages to be English " change in weight and *** denotes the smallest change in weight per source model

Unigrams

English

assessed by translating text into a resource-rich language such as English and Tweets and Predictive - Language listed under each PERMA category is the language of the source model

applying an English sentiment model [1] Bigrams Lexicon that was translated
- Approach is economica{_ and efficient - Lexica built on 80% of the messages and then evaluated on the remaining 20% - The 7% chg column is percentage change relative to the larger weight
- Not clea.ur how much culturally specific information and accuracy are lost in - Performance reported as Pearson r correlation between ground-truth annotations

translation and predicted lexica scores
- Less research has examined the translation ot sentiment on social media | Unigrams Spanish . Scores averaged over the 10 PERMA components Conclusion
- Research has not focused on translating subjective well-being Spanish and Predictive

Tweets . .
Bigrams Lexicon
0.40 , , , - bource language models applied to the source language Tweets performed best

I English Tweets
Spanish Tweets |

Well-Being - Translating a single piece (model or Tweets) resulted in a decrease in performance

, , , , - Translating both (model and Tweets) performed better than translating one piece
- Tweets were tokenzied using an emoticon-aware tokenizer 0301

- Manually correcting translation errors did not improve model performance

- Vocabularies of ~5,000 unigrams/bigrams in English and Spanish

. . . - Suggests that meaningtul cultural information was lost
- Regression model used to predict the average annotation score
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Positive Engagement Positive Accomplishment - Models were then transformed into a predictive lexicon |4
Emotion Relationships 015l
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