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Language features may reflect underlying cognitive and emotional processes following a traumatic event that portend clinical
outcomes. The authors sought to determine whether language features from usual smartphone use were markers associated with
concurrent posttraumatic symptoms and worsening or improving posttraumatic symptoms over time following a traumatic
exposure. This investigation was a secondary analysis of the Advancing Understanding of RecOvery afteR traumA study, a
longitudinal study of traumatic outcomes among survivors recruited from 33 emergency departments across the United States.
Adverse posttraumatic sequelae were assessed over the six months following the initial traumatic exposure. Language features
were extracted from usual smartphone use in a specialized app. Bivariate linear mixed models were used to identify and validate
language features that are markers associated with posttraumatic symptoms. Participants were 1744 trauma survivors, with a mean
age of 39 [SD= 13] years old, and 56% were female. Fourteen language features were associated with severity level of
posttraumatic symptoms at specific timepoints (cross-sectional markers) and five features were associated with change in severity
level of posttraumatic symptoms (longitudinal markers). References to the body and health or illness were predictive of worsening
pain, somatic, and thinking/concentration/fatigue symptom severity over time. An increase in references to others was associated
with improvement in somatic symptom severity over time and increases in expressions of causation or cognitive processes were
associated with improvement in pain symptom severity over time. Language features derived from usual smartphone use can
convey important information about health, functioning, and recovery following a traumatic event. Clinicians might utilize such
information to determine who may experience a high symptom burden or risk of worsening posttraumatic symptoms.

NPP – Digital Psychiatry and Neuroscience; https://doi.org/10.1038/s44277-025-00028-x

LAY SUMMARY

Via usual smartphone use following trauma exposure, this study identified language markers associated with patient-reported
severity and change in severity for multiple symptoms. Using language markers as a proxy for the status of and changes in specific
symptoms supports efficient remote health status monitoring and can provide clinicians with valuable real-time insights into
health, functioning, and recovery. These insights can be leveraged to guide targeted interventions tailored to individual trauma
survivors.

INTRODUCTION
Nearly 90% of US adults report exposure to at least one traumatic
event during their lifetime [1], with many presenting to an
emergency department (ED) for treatment after the experience.
Although most are not hospitalized, they are at risk of developing
adverse posttraumatic neuropsychiatric sequelae (APNS), includ-
ing pain and other somatic symptoms, thinking/concentration/
fatigue, depression, avoidance, re-experiencing, anxiety, hyperar-
ousal, sleep disruption, and nightmares [2]. These posttraumatic
symptoms are highly comorbid [3–5] and contribute to negative

outcomes such as distress, functional impairment [6, 7], and
reduced quality of life [8, 9]. However, physicians lack tools to
determine which people are at risk for severe symptoms or might
experience longer-lasting symptom burden, particularly as follow-
up after an ED visit is often limited.
Computational linguistics has gained attention as an approach

for understanding psychological aspects of human language.
Combining techniques from linguistics, cognitive science, and
artificial intelligence, computational linguistics facilitates auto-
mated processing and analysis of human language and is
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increasingly used to detect mental illness from text [10, 11]. To
generate language features, word data are processed using
validated models that estimate levels of psychological traits
including personality [12], loneliness [13], politeness [14], depres-
sion [15], stress [16], emotion categories [17], and sentiment
[18–20]. These language features may reflect underlying cognitive
and emotional processes following a traumatic event that are
important for clinical outcomes.
Prior work on language features after a traumatic experience

centers on data gathered from either written and transcribed
trauma narratives or other sources including non-trauma narra-
tives or memories and social media posts. Previous research in the
context of trauma narratives suggests that people diagnosed with
posttraumatic stress disorder (PTSD) use higher rates of first-
person singular pronouns [21], sensory words (e.g., sight, sound,
taste) [22], and emotion words (e.g., anxiety, sadness) [23, 24].
Studies examining symptom severity related to trauma narratives
find that lower rates of words expressing cognitive processes (e.g.,
thoughts, insights) [22, 25], words concerned with death and
dying [26], and shorter narrative length [27, 28] predict poorer
outcomes. However, a risk of participant distress is inherent in
using trauma narratives as data [29].
Text generated through non-trauma narratives and memories

or shared on social media offers a more naturalistic dataset than
restricting text to trauma narratives. Prior research has shown that
the results from studies with trauma narrative text are largely
replicated in studies with social media text [30]. Fewer positive
and more negative emotion words were associated with more
severe avoidance and numbing symptoms [31, 32]. A PTSD
diagnosis was associated with higher use of first-person singular
pronouns and lower use of first-person plural pronouns [33, 34].
Findings on cognitive processing words are inconsistent [30].
Studies using non-trauma narratives and memories are less
naturalistic but usually include well-characterized participants.
Although more naturalistic, difficulties verifying diagnoses, symp-
toms, and demographics for social media users are a consideration
in evaluating the outcomes of these studies. This study avoids the
shortcomings of other data sources by using the words from usual
smartphone use. Our approach avoids the potential distress
associated with trauma narratives, provides more naturalistic text
than non-trauma narratives, and ensures better characterized
participants than social media text.
The vast majority of studies only include the umbrella PTSD

diagnosis [21–28, 33, 34] or only a small number of more specific
APNS symptom domains [31, 32]. As demonstrated in other
examinations of language and co-occurring conditions [35],
investigating PTSD without considering individual APNS symp-
toms domains misses the opportunity to disambiguate language
features that are common to more than one APNS or specific to
only one. This disambiguation allows better classification and
informs transdiagnostic treatments as well as symptom-specific
interventions. To understand links between smartphone language
features and specific APNS symptom domains, this study
examines associations between language features and scores for
ten symptom domains.
Leveraging the near ubiquity of smartphones to advance

current knowledge of the relationship between usual language
and posttraumatic symptoms, we generated language features
from smartphone word data and analyzed them against self-
reported APNS symptoms from a diverse population of adults
(n= 1744) presenting to an ED after traumatic stress exposure. We
identified and internally validated language features as both cross-
sectional, between-subjects markers (i.e., language characteristics
that indicate high concurrent symptoms) and longitudinal, within-
subjects markers (e.g., language characteristics that predict
worsening or improving symptoms over time). Markers with
cross-sectional between-subjects associations can help differenti-
ate severity levels of APNS symptoms at a point in time. Those

with longitudinal within-subjects associations can help differenti-
ate worsening or improving APNS symptoms over time.

MATERIALS AND METHODS
Study overview and sample characteristics
This investigation was a secondary analysis of the AURORA (Advancing
Understanding of RecOvery afteR traumA) study [2]. AURORA collected
prospective genomic, neuroimaging, psychophysical, physiological, neu-
rocognitive, digital phenotype, and self-report data from a diverse sample
of trauma survivors who visited one of 33 EDs within 72 h of their trauma.
The full methodology of the AURORA study is described in detail by
McLean et al. [2] and was ethically approved by the Institutional Review
Board (IRB #17-0703) at UNC Chapel Hill. Beginning in September 2017
AURORA recruited participants who were aged 18–65 years old, able to
speak and read English, able to follow the protocol at the time of
enrollment, physically able to use a smartphone, expected that they would
have access to a smartphone for at least one year following study
enrollment, and had possessed a smartphone for at least one year prior to
study enrollment. We excluded patients if they had a solid organ injury
Grade > I according to the American Association for the Surgery of Trauma
Injury Scoring Scales [36], significant hemorrhage, needed a chest tube or
surgery with anesthesia, or were likely be admitted for > 72 h. Qualifying
traumatic events included motor vehicle collision, physical assault, sexual
assault, falls > 10 feet, or mass casualty incidents. Although the aim of the
AURORA study was to record data from 5000 individuals over five years,
data are being analyzed periodically to report early results to the scientific
community. This work analyzes data through July 2020 from 1744
participants who used Android smartphones. We did not include
participants with Apple phones due to Apple’s privacy restrictions. All
participants provided written informed consent after receiving a complete
description of the study. By excluding trauma survivors with long bone
fractures, laceration with significant hemorrhage, and solid organ injury,
the AURORA study was designed to disentangle the potential influence of
physiological effects related to general anesthesia, hemorrhage and
medication on these APNS symptom development.

Survey data collection and APNS symptom score generation
The Mindstrong Discovery™ app was installed onto the participants’
Android smartphone during enrollment to prompt participants to
complete brief “flash” surveys assessing APNS domains at 10 or 11
timepoints. This investigation used flash survey and word data collected in
the first six months following enrollment and focuses on ten self-reported
measures of psychological and physical symptoms associated with APNS:
pain [37, 38], depression [39–42], sleep continuity [43], nightmares [44–46],
somatic symptoms [37, 47], thinking/concentration/fatigue [48–51],
avoidance, re-experiencing, anxiety [52, 53], and hyperarousal [54–57].
For each of the ten APNS symptom domains, flash survey items were
selected by domain experts as indicator variables to develop joint
measurement models across all timepoints based on confirmatory factor
analysis. Flash survey items used to define the 10 symptoms and the days
on which each was administered are provided in Appendix 1. The joint
measurement model pooled data across all timepoints to estimate a
consistent set of latent factors (symptom domains) where all flash survey
items relevant to the APNS symptom domain were included as indicator
variables. Factor scores for each symptom were computed for each
participant for each timepoint as measures to define these 10 APNS
symptom domains. These factor scores were then used to identify and
validate language markers that are associated with specific APNS symptom
domains either at a point in time (cross-sectional between-subjects trait
markers) or over time (longitudinal within-subjects state markers).

Word data collection and language feature generation
The Mindstrong Discovery™ app continuously and passively collected all
words entered on the smartphone via the native keyboard or a Mindstrong
keyboard and recorded an unordered list of unique words and their
frequencies each day. Reconstructing individual text messages, emails, or
other text-based interactions from this list is impossible, ensuring
participant privacy. These word data were de-identified and encrypted
to further ensure confidentiality. As in other studies of language in the
context of mental health [35], we then generated language-based
estimates of psychological traits and lexicon-based characteristics of text.
Validated language models of emotion calculated estimated levels of
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psychological traits such as personality [12], loneliness [13], politeness [14],
depression [15], stress [16], emotion categories [17], and sentiment
[18–20]. Language Inquiry and Word Count (LIWC) software [58] calculated
lexical characteristics such as frequency of parts of speech, references to
other people, and word count (see all characteristics in Appendix 3). All
language features were normalized to introduce a common scale and
ensure that higher scores indicate a higher level of the modeled attribute,
and lower scores indicate a lower level of the attribute.

Language feature preprocessing, identification, internal
validation, and evaluation
We preprocessed the normalized language features generated in the prior
step by checking for extreme and abnormal values, missing and zero
percentage of each language feature, as well as the correlation between
each pair of features. Next, we identified subsets of language features that
were highly correlated (Spearman correlations > 0.85) to reduce redun-
dancy. For each subset, we retained the feature that showed the strongest
univariate association with APNS symptom scores or was deemed
conceptually most interpretable based on prior research. To minimize
the inclusion of features with limited variability, we excluded language
features with a zero percentage larger than 90%, set word counts larger
than 10,000 to missing, and removed participants who switched
smartphone operating system (ex. Android to Apple iOS) within the first
six months. Word counts greater than 10,000 were set to missing to
address potential outliers that could skew the results. Such extreme values
likely reflect data collection artifacts or atypical user behavior, and their
exclusion is intended to enhance the robustness of the analysis.
Because missing data is common for large-scale, longitudinal, natur-

alistic studies, it is critical to examine the missing mechanism of these
missing values. We calculated the correlations of the APNS symptom
scores with the completion rate of the four main study activities–survey,
flash survey, neurocognitive tests, and watch wearing–to evaluate whether
missing values were associated with symptom severity. Identifying these
associations helps determine whether missingness in the data may be
systematically related to participants’ clinical characteristics, which is
critical for interpreting results and addressing potential biases in the
analysis. All the correlations are weak (<0.1, Appendix 2), suggesting that
missing data did not bias the main outcome associations. As a result, we
considered these missing data as missing at random, and these missing
values were handled by the bivariate linear mixed model using full
information maximum likelihood estimation method.
For each flash survey timepoint for each participant, the mean of the

language features from the day prior to and the day of APNS symptom
data collection were merged with each of the 10 APNS symptom scores
and used as candidate language markers for corresponding APNS
symptom domains. We randomly divided the aggregated data into two
equal parts and used one half for marker identification and the other half
for internal validation. The internal validation step was applied to ensure
that the markers were consistently associated with the symptoms. To
identify and validate markers, we estimate and test the correlation
between language features and each of the 10 symptom domains with
repeated measures from each participant. To account for the correlation
structure of the repeated measures, we used a bivariate linear mixed
model approach [59, 60] to simultaneously model the cross-sectional and
longitudinal associations of each language feature within each symptom
domain. Using the first half of the data, language feature variables are
identified as potential language markers if their associations (either cross-
sectional or longitudinal) with any of the 10 APNS symptom domains are
statistically significant (adjusted p-value < 0.05) after False Discovery Rate
(FDR) multiple tests correction. These potential markers are then further
validated using the same bivariate linear mixed model on the remaining
50% of the data, where markers retaining statistically significant
associations (adjusted p-value < 0.05) after Bonferroni multiple tests
correction are confirmed as markers for corresponding APNS symptom
domains. For those longitudinal language markers passing both identifica-
tion and validation steps, we evaluated for their accuracy in predicting
change in the corresponding APNS symptom scores (e.g., worsening versus
improvement). A simple cut-off was used to define worsening and
improvement, such that worsening of symptom severity is defined as
(severity score at six months minus severity score at one week) > 0, and
improvement in symptom severity is defined as (severity score at six months
minus severity score at one week) < 0. The predicted symptom score change
was generated by applying the same cut-offs to the change of longitudinal
markers over the same time window. The sensitivity, specificity, and
positive and negative predictive value (PPV, NPV) of the change in marker

value associated with the change in symptom score were then assessed.
High PPV for worsening or high NPV for improvement would suggest that
language markers derived from smartphone use may have utility as initial
screening measures for adverse posttraumatic outcomes among trauma
survivors.

RESULTS
Sample sociodemographic, trauma exposure, and clinical
characteristics
Demographic characteristics of the participants are presented in
Table 1. Most of the participants were female (55.5%) with a mean
age of 39.0 years old (SD 13.0). More than half were non-Hispanic
Black (53.6%), followed by non-Hispanic White (31.7%), and Hispanic
(10.9%). The majority did not have a college degree (84.4%). The
traumatic exposure that conferred eligibility for the study was a
motor vehicle collision for almost three-quarters of the sample
(71.0%). Median symptom scores over the first 6 months after
trauma exposure indicate that moderate symptoms (e.g., pain >= 4
on a scale of 0–10) were observed for much of the sample and
symptom burden tended to improve over time (Fig. 1).

Language feature characteristics
All participants used Android smartphones for the duration of the
study and typed a mean of 387.13 (SD= 1137.43) and a median of
143 words per day. Summary statistics for the language features
are in Appendix 3, including examples of words associated with
each language feature.

Table 1. Demographic information.

N= 1744

Age (y) (Mean, SD) 39.0 (13.0)

Gender n %

Female 968 55.5

Race n %

Hispanic 190 10.9

Non-Hispanic White 553 31.7

Non-Hispanic Black 935 53.6

Non-Hispanic Other 58 3.3

Education Status n %

High school or less 262 15.0

High school graduate 496 28.4

Some college 715 41.0

College or more 264 15.1

Marital Status n %

Married 364 20.9

Separated/Divorced/Widowed/Annulled 388 22.2

Never been married 978 56.1

Trauma Type n %

Motor Vehicle Collision 1238 71.0

Physical Assault 204 11.7

Sexual Assault 7 0.4

Fall >= 10 feet 29 1.7

Incident causing traumatic stress exposure to
many people

7 0.4

Non-motorized Collision 25 1.4

Fall < 10 feet or from unknown height 104 6.0

Burns 11 0.6

Animal-related 45 2.6

Other 74 4.2
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Cross-sectional language markers
We first identified and internally validated cross-sectional lan-
guage markers that differentiated individuals experiencing
different severities of specific APNS symptoms at any point in
time. Fourteen language markers met internal validation criteria
for seven APNS symptom domains with some markers associated
with more than one symptom domain. The significant cross-
sectional, between-subjects correlations between symptom sever-
ity scores and language markers are reported in Table 2. We
internally validated four significant cross-sectional language
markers for the severity of pain, nine for somatic symptoms, one
for avoidance, three for hyperarousal, two for nightmares, two for
depression, and one for anxiety. Higher levels of pain and somatic
symptoms were associated with more frequent references to
people (family, other people, males). Higher levels of pain were
associated with less frequent expressions of tentativeness and
more frequent expressions of happiness. Higher levels of somatic
symptoms and hyperarousal were associated with more frequent
expressions of loneliness and less frequent use of articles. Higher
levels of somatic symptoms, nightmares, and avoidance were
associated with more frequent use of first-person singular
pronouns and higher levels of somatic symptoms and nightmares
were associated with less frequent use of longer words (>6 letters).
Higher levels of hyperarousal, depression, and anxiety were
associated with more frequent expressions of negative emotion.
Lastly, higher levels of somatic symptoms were associated with
more frequent use of all personal pronouns and informal speech.

Longitudinal language markers
We next identified and internally validated longitudinal language
markers whose changes are associated with changes in severity
score (either worsening or improvement) of specific APNS
symptom domains. Five language markers met internal validation
criteria for three APNS symptom domains with some markers
associated with more than one symptom domain. The statistically
significant longitudinal, within-subjects correlations between
change in APNS symptom scores and change in language markers
are reported in Table 3. We internally validated four significant
language longitudinal markers for change in severity of pain, two
for somatic symptoms, and one for thinking/concentration/

fatigue. Increases in pain, somatic symptoms, and problems with
thinking/concentration/fatigue were associated with an increase
in references to health or illness, while an increase in pain was also
associated with an increase in references to the body. A decrease
in pain was associated with an increase in references to causation
and cognitive processes. Finally, a decrease in somatic symptoms
was associated with an increase in references to other people.

Utility of predicting worsening and improvement using longitudinal
language markers. We evaluated the potential utility of the
longitudinal language markers for predicting worsening and
improvement of symptoms from one week to six months post-
trauma. Worsening pain severity was experienced by 24% of
participants, worsening somatic symptom severity was experi-
enced by 22% of participants, and worsening thinking/concentra-
tion/fatigue severity was experienced by 28% of participants. PPV
was between 0.76 and 0.82 for all markers (see Table 4).
Improvement in pain severity was experienced by 76% of
participants, improvement in somatic symptom severity was
experienced by 78% of participants, and improvement in
thinking/concentration/fatigue severity was experienced by 72%
of participants. In general, the prediction of improvement in
severity was slightly less accurate for each marker than the
prediction of worsening severity. NPV was between 0.68 and 0.78
for all markers (see Supplementary Table 1). Relatively high PPV for
symptom worsening and High NPV for symptom improvement
indicate that these longitudinal markers can predict symptom
worsening better than improvement, based on this simple
prediction model. However, no single marker achieved both high
PPV and NPV in predicting the change of APNS symptom scores.

DISCUSSION
Using language data collected from usual smartphone use, we
derived and internally validated 14 cross-sectional and five
longitudinal relationships between language features and APNS
symptom severity during the first six months following a traumatic
event – a high-risk period during which trauma survivors might
experience either symptom recovery or persistence [2]. To our
knowledge, this is the first study to examine such associations

Fig. 1 Median adverse posttraumatic neuropsychiatric symptom scores over the first 6 months after trauma exposure.
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using word data from usual smartphone use. Of interest, pain and
somatic symptoms exhibited several cross-sectional and long-
itudinal associations, suggesting that APNS symptom domains not
traditionally considered part of a PTSD diagnosis may be uniquely
associated with language features.
In particular, higher frequency of references to others (i.e.,

family, other people, males) was associated in the cross-sectional
analysis with higher pain and somatic symptom scores and an
increase in frequency in references to others was associated in
the longitudinal analysis with a decrease in somatic symptom
scores. The paradox of both higher frequency of references to
others being associated with higher somatic symptom severity
and increased frequency of references to others being

associated with decreased symptom severity should be further
investigated. In addition, higher frequency of expressions of
loneliness was associated with higher hyperarousal scores. These
results concerning references to others and expressions of
loneliness support a link between social processes and health
outcomes, as suggested by prior work [61], and the role of
language should be investigated further. Also, in accordance
with previous research, higher scores in the somatic, avoidance,
and nightmare domains were associated with higher frequency
of use of first-person singular pronouns [21, 22, 62]. This finding
may suggest an understandable focus on the self in response to
posttraumatic symptoms and may constitute a useful health
status marker.

Table 3. Changes in smartphone language markers associated with longitudinal changes in adverse posttraumatic neuropsychiatric (APNS)
symptom severity

APNS symptom Language markera Correlation P-value Adjusted p-valueb

Pain References to the body 0.0684 <0.001 0.0023

References to health or illness 0.1303 <0.001 0.0023

Expressions of causation −0.0527 0.0013 0.0299

Expressions of cognitive processes −0.0523 0.0015 0.0345

Somatic Symptoms References to health or illness 0.0585 <0.001 0.0023

References to other people −0.0621 <0.001 0.0023

Thinking/Concentration/Fatigue References to health or illness 0.0573 <0.001 0.0046
aDerived using Language Inquiry and Word Count (LIWC) software.
bBonferroni adjusted p-values are used.
All values are from the validation sample.

Table 2. Smartphone language markers (average of two 24-h periods) associated with cross-sectional adverse posttraumatic neuropsychiatric (APNS)
symptom severity

APNS symptom Language marker Correlation P-value Adjusted p-valuea

Pain References to familyb 0.2560 <0.001 0.0088

References to other peopleb 0.2467 <0.001 0.0088

Expressions of tentativenessb −0.2371 <0.001 0.0088

Expressions of happinessc 0.1805 <0.001 0.0352

Somatic Symptoms Use of first-person singular pronounsb 0.2660 <0.001 0.0088

Use of any personal pronounsb 0.1747 <0.001 0.0352

References to malesb 0.2711 <0.001 0.0088

References to other peopleb 0.2445 <0.001 0.0088

Words containing over six lettersb −0.2326 <0.001 0.0088

Expressions of tentativenessb −0.2343 <0.001 0.0088

Use of informal speechb 0.1761 <0.001 0.0264

Use of articlesb −0.1889 <0.001 0.0352

Expressions of lonelinessd 0.2562 <0.001 0.0088

Avoidance Use of first-person singular pronounsb 0.1926 <0.001 0.0088

Hyper-arousal Expressions of negative emotionsb 0.2840 <0.001 0.0088

Use of articlesb −0.2422 <0.001 0.0176

Expressions of lonelinessd 0.2319 <0.001 0.0088

Nightmare Use of first-person singular pronounsb 0.2410 <0.001 0.0088

Words containing over six lettersb −0.1886 <0.001 0.0176

Depression Expressions of negative emotionb 0.3360 <0.001 0.0088

Expressions of angerb 0.1723 <0.001 0.0264

Anxiety Expressions of sadnessb 0.6513 0.0002 0.0176
aBonferroni adjusted p-values are used.
bDerived using Language Inquiry and Word Count (LIWC) software.
cDerived using Dodds, [18].
dDerived using Guntuku, [13, 16].
All values are from the validation sample.
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Similar to previous research findings [22, 26, 63–65], more
frequent use of indicators of language complexity such as words
containing over six letters, articles, and expressions of tentative-
ness were associated with lower cross-sectional scores for pain,
somatic, hyperarousal, and nightmare symptom domains. More
frequents expressions of sadness, anger, and negative emotions
were associated only with higher scores in the affective domains
of hyperarousal and depression, and were consistent with prior
research suggesting that those with PTSD tend to express more
sadness and less happiness [66]. However, in our sample, more
frequent expressions of happiness were associated with higher
scores in the pain symptoms domain, supporting the notion that
APNS symptom domains may have unique or overlapping
language marker profiles and necessitating further investigation.
We found that worsening pain, somatic, and thinking/concentra-

tion/fatigue APNS symptom domain scores were associated with
more frequent references to the body and health or illness. As with
the use of first-person singular pronouns, this usage increase may
indicate an understandable increase in focus on concerning APNS
symptoms, but prior research has not evaluated language use
associations with these specific domains so further work is needed.
The stronger correlations observed in Table 2 (cross-sectional

associations) compared to Table 3 (longitudinal associations) likely
reflect the immediate relationship between smartphone usage
metrics and contemporaneous survey responses. This suggests
that smartphone behavior may be more tightly linked to
psychological states or experiences at the moment rather than
longitudinally over time.
Smartphones are a near ubiquitous vehicle for communication

and internet access. The words we use during interactions
mediated by smartphones can convey information about our
health, including symptoms occurring after a traumatic experi-
ence. In the future, language markers may help clinicians identify
individuals who are experiencing a high level of symptom burden
or who are at risk for worsening symptoms and merit further
evaluation for adverse outcomes. These same language markers
might also be useful for monitoring response to treatments or
therapeutic interventions.

LIMITATIONS
Several limitations are relevant when considering the results of this
investigation. Our participants were enrolled in the ED, thus
generalizability of findings to trauma survivors who do not present
to the ED is not known. The majority of participants were survivors
of motor vehicle collisions and the generalizability of results to other
types of trauma is also not known. Although missing data were not
correlated with the study outcome measures, other missingness
patterns could not be accounted for in the analysis. We also used
data only from Android phone users and their use patterns may vary
from users of other smartphones. We acknowledge that adminis-
tering flash surveys may have inadvertently primed participants,
influencing their word usage or psychological responses. For
example, completing a survey in the morning could subtly shape
participants’ smartphone interactions later in the day. Furthermore,
the daily administration of flash surveys, sometimes on consecutive
days, could introduce overlap or carryover effects in word usage or
psychological states. For instance, language metrics tied to one
construct might inadvertently capture signals from related con-
structs measured on adjacent days. Future studies are needed to
disentangle potential priming effect from natural variation in
language usage and psychological symptoms and to adjust for
temporal dependencies.
We also remind readers that this investigation is exploratory

rather than being a confirmatory study testing theoretical
hypotheses. Additionally, study assessments were limited to the
six months following a traumatic event and only used language
data. Future studies might investigate generalizability and shouldTa
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examine associations between APNS symptom domains and
language features in conjunction with other passive data, such
as keystroke and activity data, collected over longer durations and
including sex-related differences. While our primary analyses did
not specifically examine sex-related differences in smartphone
word use, this is an important and relevant area for further
analyses to assess whether sex might moderate the relationship
between language usage and APNS symptoms after trauma
exposure. Future studies could leverage symptom trajectory data
to investigate whether patterns of smartphone language use vary
based on longitudinal symptom trajectories. Finally, we want to
note that when demonstrating the potential utility of predicting
symptom changes (both worsening and improvement) using
longitudinal language markers, we employed a very simple
prediction model based solely on individual markers. Conse-
quently, the overall prediction accuracy was not high. We
anticipate that much better prediction accuracy can be achieved
by using more advanced statistical and machine learning
techniques, which would combine all the longitudinal markers
along with baseline characteristics. We also recognize that the
small degree of change defined by the cutoff of zero may not
represent clinically meaningful shifts. This decision was made
partly due to a lack of widely accepted cutoffs for these
symptoms. However, these improvements are beyond the scope
of the current study.

CONCLUSION
This investigation sought to establish the relationship between
language features derived from usual smartphone use and the
severity and change in posttraumatic symptoms. The use of
smartphone interactions as the data source after a traumatic
experience rather than trauma narratives is unique and avoids
additional patient burden and possible distress. We identified
fourteen language markers for cross-sectional severity of seven
APNS symptom domains and five language markers for long-
itudinal changes in severity for three APNS symptom domains.
These findings confirm that language markers derived from usual
smartphone use convey important information about health,
functioning, and recovery following a traumatic event. Patterns of
language use could contribute to remote symptom monitoring
during the post trauma period and clinicians might use such
information to identify those at risk for high symptom burden or
worsening posttraumatic symptoms. Future research includes
investigating sex differences and novel associations.
Data used in this manuscript is available through the National

Institute of Mental Health (NIMH) Data Archive (NDA). The NDA
Collection for the AURORA Project can be found here: https://
nda.nih.gov/edit_collection.html?id=2526.
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